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Abstract
We compare the slow dynamics of irreversible gels, colloidal gels, glasses and
spin glasses by analysing the behaviour of the so-called nonlinear dynamical
susceptibility, a quantity usually introduced to quantitatively characterize the
dynamical heterogeneities. In glasses this quantity typically grows with time,
reaches a maximum and then decreases at large times, due to the transient
nature of dynamical heterogeneities and to the absence of a diverging static
correlation length. We have recently shown that in irreversible gels the
dynamical susceptibility is instead an increasing function of time, as in the case
of spin glasses, and that it tends asymptotically to the mean cluster size. On
the basis of molecular dynamics simulations, we show here that in colloidal
gelation where clusters are not permanent, at very low temperature and volume
fractions, i.e. when the lifetime of the bonds is much larger than the structural
relaxation time, the nonlinear susceptibility has a behaviour similar to that of the
irreversible gel, followed, at higher volume fractions, by a crossover towards the
behaviour of glass-forming liquids.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many complex systems, such as glasses, spin glasses, irreversible gels, colloidal gels and
others, exhibit a complex dynamics, all characterized by a slowing down usually leading
to a structural arrest. Nevertheless there are significative differences among these systems,
often not well clarified. One of the key concepts to describe the slow dynamics in glassy
systems is that of dynamical heterogeneities. Here we want to classify and compare the above
systems by looking at the behaviour of the so-called nonlinear dynamical susceptibility, a
quantity usually introduced to quantitatively characterize the dynamical heterogeneities. In
glass-forming liquids different definitions have been proposed for the nonlinear dynamical
susceptibility [1, 2]. Mostly considered are the fluctuations of the self-intermediate and the
total-intermediate scattering functions. These quantities typically have similar behaviour,

0953-8984/07/205103+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/20/205103
http://stacks.iop.org/JPhysCM/19/205103


J. Phys.: Condens. Matter 19 (2007) 205103 A Coniglio et al

grow with time, reach a maximum and then decrease at large times. This behaviour is a
consequence of the transient nature of dynamical heterogeneities and the absence of a diverging
static correlation length. On the other hand, for systems with quenched interactions such as
spin glasses, characterized by a diverging static correlation length at the spin glass critical
temperature, the dynamical susceptibility defined as the fluctuations of the time-dependent
spin–spin autocorrelation function is a monotonic function increasing with time. As the time
goes to infinity this dynamical susceptibility for a fixed temperature T tends to a plateau
whose value coincides with the static nonlinear susceptibility. Therefore as T approaches
the spin glass temperature the value of the plateau diverges with the same behaviour as the
static nonlinear susceptibility. In irreversible gels the definition of the corresponding dynamic
susceptibility is not straightforward and one should carefully distinguish different dynamical
quantities. We have recently shown [3] that in a microscopic model for irreversible gels the
dynamical susceptibility defined as the fluctuations of the self-intermediate scattering function
is a monotonic function as in the case of spin glasses and, for each fixed value of the volume
fraction, its long-time limit tends to a plateau whose value coincides with the mean cluster size.
The value of this plateau therefore diverges at the percolation threshold as the mean cluster
size. Such a finding corresponds to the fact that in irreversible gelation the heterogeneities are
due to the static nature of the clusters.

On this basis, we speculate that in colloidal gelation, where clusters are not permanent due
to the finite bond lifetime, this nonlinear susceptibility should show a behaviour similar to the
dynamical susceptibility of the irreversible gel at very low temperature and very low volume
fraction, where the lifetime of the bonds is much larger than the structural relaxation time. At
higher volume fractions and temperature, it should cross over towards a behaviour of glass-
forming liquids. Here we give some evidence based on some molecular dynamics simulations
of a model for colloidal gelation [4–6]. Moreover, using this scenario, we interpret previous
results found in experimental investigations of colloidal suspension [7] and in some molecular
dynamics simulations [4]. Finally, we also show that, in the spin glass type of model, when the
lifetime of the interaction is made finite the behaviour found is similar to that found in colloidal
systems [8].

In the following, first we recall the behaviour of linear dynamical susceptibility of glass-
forming liquids and spin glasses (section 2.1). Then (section 2.2) we consider the case of
irreversible gels. In section 3.1, we discuss the case of colloidal gelation and compare with
a spin glass type of model with annealed interactions (section 3.2). Finally we analyse the
emerging scenario and the further developments that this study suggests (section 4).

2. Systems with quenched interactions

2.1. Spin glasses

We briefly recall the 3d Ising spin glass where the Hamiltonian of the model is H =
J

∑
〈i j〉 εi j Si S j , with Si = ±1 Ising spins, and εi j = ±1 quenched and disordered interactions.

The 3d model undergoes a transition at a temperature, TSG, with a divergence of the static
nonlinear susceptibility, χnl = 1

N

∑
i j [〈Si S j 〉2], where the average 〈· · ·〉 is over the Boltzmann

measure, and the average [· · ·] is over the disorder configurations. The dynamical nonlinear
susceptibility was first introduced in p-spin models, considered as the prototype models of
glass formers in mean field [1],

χ(t) = N[〈q(t)2〉 − 〈q(t)〉2], (1)

where q(t) = 1
N

∑
i Si (t ′)Si (t ′ + t) and the average 〈· · ·〉 is done on the reference time t ′. In

the 3d Ising spin glass, differently from the behaviour observed in p-spin models, χ(t) grows
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monotonically until a plateau value is reached. The plateau value coincides with the static
nonlinear susceptibility and diverges at the transition [8].

2.2. Irreversible gels

In this section we present a molecular dynamics (MD) study of a microscopic model recently
introduced [3] for irreversible gels. We consider a 3d system of N = 1000 particles interacting
via a Lennard-Jones potential, truncated in order to have only the repulsive part:

U LJ
i j =

{
4ε[(σ/ri j)

12 − (σ/ri j)
6 + 1

4 ], ri j < 21/6σ

0, ri j � 21/6σ

where ri j is the distance between the particles i and j . After a first equilibration, we introduce
quenched bonds between particles whose relative distance is smaller than R0 by adding an
attractive potential,

U FENE
i j =

{
−0.5k0 R2

0 ln[1 − (ri j/R0)
2], ri j < R0

∞, ri j � R0
,

representing a finitely extendable nonlinear elastic (FENE) [9]. The system is then further
thermalized. We have chosen k0 = 30ε/σ 2 and R0 = 1.5σ as in [9] and performed MD
simulations in a box of linear size L (in units of σ ) with periodic boundary conditions. The
equations of motion were solved in the canonical ensemble (with a Nosé–Hoover thermostat)
using the velocity Verlet algorithm [10] with a time step �t = 0.001δτ , where δτ =
σ(m/ε)1/2, with m the mass of particle. In our reduced units the unit length is σ , the unit
energy ε and the Boltzmann constant kB is set equal to 1. The temperature is fixed at T = 2
and the volume fraction φ = πσ 3 N/6L3 is varied from φ = 0.02 to 0.2. By varying the
volume fraction we find that the system undergoes a percolation transition in the universality
class of the random percolation. We have investigated the dynamical evolution of the system
by studying the self-intermediate scattering functions, 
s(k, t) = 1

N

∑N
i=1 ei�k·(�ri (t)−�ri (0)), for

increasing volume fractions. As it is found in experiments on real gels, we observe stretched
exponential decays at volume fractions lower than the percolation threshold φc, and the onset
of power law decays when φ approaches φc.

We have moreover measured the dynamical susceptibility associated to the fluctuations of
the self-intermediate scattering functions [2], i.e. χ4(k, t) = N[〈|
s(k, t)|2〉 − 〈
s(k, t)〉2],
where 〈· · ·〉 is the thermal average for a fixed bond configuration and [· · ·] is the average
over the bond configurations. We have shown analytically in [3] that this quantity, in the
thermodynamic limit, for t → ∞ and k → 0, tends to the mean cluster size.

In the main frame of figure 1, χ4(kmin, t) (with kmin = 2π/L) is plotted for increasing
values of the volume fractions φ � φc. In contrast to the non-monotonic behaviour typically
observed in glassy systems, we find that it increases with time until it reaches a plateau, whose
value increases as a function of φ.

In the inset of figure 1, χas(kmin, φ) ≡ limt→∞ χ4(kmin, t) is plotted as a function of
(φc − φ) together with the mean cluster size. We find that, as the percolation threshold is
approached from below, χas(kmin, φ) diverges as a power law at φc. The exponent, within
numerical accuracy, is in agreement with the value of the exponent γ of the mean cluster size.
This finding confirms that one key difference between irreversible gelation due to chemical
bonds and supercooled liquids close to the glass transition is that in irreversible gelation the
heterogeneities have a static nature (clusters). The clusters, on the other hand, affect the
dynamics, and as a consequence the dynamic transition coincides with the static transition,
characterized by the divergence of a static correlation length (linear size of the clusters).
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Figure 1. Main frame: χ4(kmin, t) as a function of t for φ = 0.02, 0.05, 0.06, 0.07, 0.08, 0.085,
0.09, 0.095, 0.10 (from bottom to top). Inset: asymptotic values of the susceptibility (full triangles),
χas (kmin, φ) and mean cluster size (open squares) as a function of (φc − φ). The data are fitted by
the power law (φc − φ)−γ with γ = 1.8 ± 0.1.

The behaviour observed in the case of permanent gels is very similar to that of spin
glasses in finite dimensions. Although these systems have very different structures, they show
a very similar dynamical behaviour due to the static nature of heterogeneities. In both cases
interactions are quenched. What can we expect in the cases where the interactions are not
quenched and have a finite lifetime? In the following section we will try to answer this question.

3. Systems with finite bond lifetime

3.1. Colloidal gelation

In this section we present the results obtained in an MD study of a DLVO (Derjaguin, Landau,
Verwey and Overbeck)-type potential [11] for charged colloidal systems, and discuss how in
colloidal gelation the finite bond lifetime affects the dynamics and, in particular, the behaviour
of the dynamical susceptibility.

We consider a system of N = 10 000 φ particles, interacting via a potential which contains
a van der Waals type interaction plus an effective repulsion due to the presence of charges:

V (r) = ε

[

a1

(σ

r

)36 − a2

(σ

r

)6 + a3e−λ( r
σ
−1)

]

, (2)

where a1 = 2.3, a2 = 6, a3 = 3.5, and λ = 2.5. With these parameters the repulsion term
dominates the van der Waals attraction at long range, providing a short-range attraction and
a long-range repulsive barrier. The potential is truncated and shifted at a distance of 3.5σ .
To mimic the colloidal dynamics, we performed MD simulations at constant temperature.
Equations of motion were solved in the canonical ensemble (with a Nosé–Hoover thermostat)

using a velocity Verlet algorithm with a time step of 0.001t0 (where t0 =
√

mσ 2

ε
and m is the

mass of the particles).
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Figure 2. The dynamic susceptibility, χ4(kmin, t), for kBT = 0.15ε and φ = 0.10, 0.11, 0.12, 0.13
(from left to right).

We find [4–6] that at low volume fraction compact stable clusters form with typical size
s 	 10. By increasing the volume fraction a residual attractive interaction between the clusters
produces elongated structures, which finally order in a columnar phase [5]. A small degree of
polydispersity is introduced [6] in order to avoid the transition to the ordered phase. In this case,
by increasing the volume fraction the elongated structures form instead a long-living random
percolating network, i.e. the gel phase. The bond lifetime has a non-monotonic behaviour. At
kBT = 0.15ε it decreases by about one order of magnitude from φ = 0.10 to 0.13, has a
minimum at 0.13, and finally increases for φ > 0.13.

The dynamical susceptibility, χ4(kmin, t), is measured for φ = 0.10, 0.11, 0.12, 0.13 (see
figure 2). The data give evidence of a clear crossover from the low volume fraction regime
to the intermediate regime. In the first regime, where the bond lifetime is much larger than
the structural relaxation time, we find a behaviour resembling that observed in the permanent
gels. Although χ4(kmin, t) is a non-monotonic function, it increases until a value comparable
to the mean cluster size is reached; a plateau decreasing slowly as a function of time is clearly
present in the intermediate time region; finally, at very long times, χ4(kmin, t) decreases to its
equilibrium value. Increasing φ, the bond lifetime and the structural relaxation time become
comparable. In this case χ4(kmin, t), which is again a non-monotonic function, displays a well-
pronounced maximum as usually observed in glassy systems. These data suggest that in the
first regime the clusters behave dynamically as being made of permanent bonds, as in chemical
gelation, and the dynamics is dominated by the presence of such clusters. On increasing φ,
the structural relaxation begins to be affected also by the crowding of the particles, and a clear
crossover to a new glassy regime is found.

3.2. A spin glass type of model with annealed interactions

It is now extremely interesting to analyse the case of annealed interactions in a spin glass type
of model. To this aim we consider the results obtained in Monte Carlo simulations of the so-
called frustrated lattice gas (FLG). This model, recently introduced in connection with the glass
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Figure 3. Dynamical nonlinear susceptibility in the annealed FLG for densities ρ = 0.52, 0.53,
0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61 (from left to right).

transition [12, 13], has mean-field properties closely related to those of p-spin models. Being
constituted by diffusing particles, it is suited to study quantities like the diffusion coefficient,
or the density autocorrelation functions, that are usually important in the study of liquids. The
Hamiltonian of the model is

−β H = J
∑

〈i j〉
(εi j Si S j − 1)ni n j + μ

∑

i

ni , (3)

where Si = ±1 are Ising spins, ni = 0, 1 are occupation variables, and εi j = ±1. In the case
where εi j are quenched variables randomly distributed, the 3d model undergoes a transition
of the type of 3d spin glasses [14]. Here we considered the case where the interactions εi j

evolve in time, i.e. they are annealed variables [8]. In this case dynamical properties strongly
resembling those of glass formers and well fitted by the mode coupling theory for supercooled
liquids are found.

The dynamical nonlinear susceptibility is defined by

χ(t) = N[〈q(t)2〉 − 〈q(t)〉2], (4)

where q(t) = 1
N

∑
i Si (t ′)ni (t ′)Si (t ′+t)ni (t ′+t) and the average 〈· · ·〉 is done on the reference

time t ′. In figure 3, χ(t) is plotted for increasing values of the density. The same behaviour
of the p-spin model in mean field [1] and of MD simulations of the Lennard-Jones binary
mixture [15] is observed: χ(t) shows a maximum, χ(t∗), at a time t∗, and both χ(t∗) and
t∗ seem to diverge when the density grows. For the highest density, the maximum of χ(t)
decreases, possibly due to the transition to an unfrustrated state. Comparing the behaviour
found in this case with that shown in the previous section, we note that here the first regime
with a clear plateau in the susceptibility is not present. This is probably due to the fact that the
interaction relaxation time is in this case always comparable to the structural relaxation time.
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4. Conclusions

By means of the dynamical susceptibility, we have here analysed the presence of dynamical
heterogeneities in systems with quenched and annealed interactions. In the case of quenched
interactions, as happens in spin glasses, the dynamical susceptibility grows monotonically in
time until a plateau value is reached. The plateau value coincides with the static nonlinear
susceptibility and diverges at the transition. This behaviour is in fact also observed in a
microscopic model for irreversible gels, where the plateau value of the dynamic susceptibility
diverges at the percolation transition as the mean cluster size. These results confirm that in
irreversible gelation the heterogeneities have a static nature (clusters). These clusters, on the
other hand, affect the dynamics, and as a consequence the dynamic transition coincides with
the static transition, characterized by the divergence of a static correlation length (linear size of
the clusters).

With annealed interactions instead, in the case of spin glass type of models, one recovers
the non-monotonic behaviour of the dynamical susceptibility, which is typically observed in
glasses. This is due to the transient nature of dynamical heterogeneities and the absence of
a diverging static correlation length. We analyse moreover the case of colloidal gelation,
where the clusters are not permanent due to the finite lifetime of the bonds. We find that
the dynamical susceptibility is again a non-monotonic function, and displays at high volume
fraction a well-pronounced maximum as usually observed in glassy systems. Remarkably,
at very low temperature and very low volume fraction, where the lifetime of the bonds is
much larger than the structural relaxation time, the dynamical susceptibility shows a behaviour
similar to the dynamical susceptibility of the irreversible gel with a crossover, at higher volume
fractions, towards a behaviour typical of glass-forming liquids. These results suggest that in
the first regime the dynamics is dominated by clusters, made of bonds which can be considered
as permanent in this time window. On increasing φ, when these two timescales become
comparable, the structural relaxation begins to be affected also by the crowding of the particles,
and a clear crossover to a new glassy regime is found.
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